
Eur. Phys. J. B 57, 147–152 (2007)
DOI: 10.1140/epjb/e2007-00106-7 THE EUROPEAN

PHYSICAL JOURNAL B

Can a few fanatics influence the opinion of a large segment
of a society?

D. Stauffera and M. Sahimi

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California,
Los Angeles, California 90089-1211, USA

Received 31 August 2006 / Received in final form 18 December 2006
Published online 13 April 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. Models that provide insight into how extreme positions regarding any social phenomenon may
spread in a society or at the global scale are of great current interest. A realistic model must account for
the fact that globalization, internet, and other means of mass communications have given rise to scale-free
networks of interactions between people. We propose a novel model which takes into account the nature
of the interactions network, and provides some key insights into this phenomenon. These include, (1) the
existence of a fundamental difference between a hierarchical network whereby people are influenced by
those that are higher in the hierarchy but not by those below them, and a symmetrical network where
person-on-person influence works mutually, and (2) that a few “fanatics” can influence a large fraction of
the population either temporarily (in the hierarchical networks) or permanently (in symmetrical networks).
Even if the “fanatics” disappear, the population may still remain susceptible to the positions originally
advocated by them. The model is, however, general and applicable to any phenomenon for which there is
a degree of enthusiasm or susceptibility to in the population.

PACS. 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 89.65.-s Social and economic systems – 89.75.-k Complex systems

1 Introduction

Given the current political climate around the world, and
the rise of extreme ideologies in many parts of the globe,
models that can provide insight into how extreme ideolo-
gies and opinions spread in a society are clearly of current
interest. In particular, one should keep in mind two facts:
(1) globalization, the internet, and other modern means of
long-distance communications (for example, fax, and mo-
bile phones) have given rise to a scale-free (SF) network
of interactions between people [1]. In a SF network the
probability distribution f(k) for a node to have k links to
other nodes follows a power law,

f(k) ∼ k−γ , (1)

where γ is a parameter that measures how well-connected
the network is. Many unusual properties of SF networks
have been attributed to the above distribution. (2) One
should also keep in mind that although extreme ideologies
are typically advocated by very small fringe groups, they
may continue to survive and even thrive over certain time
scales, it is clearly important to understand the role of
such factors on the opinion of a population, and how they
affect such antisocial behavior as terrorism.
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In this paper we propose a novel model in order to
understand this phenomenon. The model is used to study
how the opinions of various segments of a population may
be influenced by the interactions among individuals, and
how the connectivity of the interaction network influences
the survival or disappearance of an opinion. We represent
the network of interactions between people by a SF net-
work [1] and study various scenarios that may affect the
dynamics of the spreading of an opinion in a population.

The phenomenon that we study, and the model that
we develop for it belong, in principle, to a general class
of problems that describe various epidemic processes. In
particular, our model and work are motivated by the work
of Castillo-Chavez and Song [2] (see below). Great efforts
have been devoted for decades to understanding how cer-
tain epidemic diseases, such as HIV, spread throughout a
society [3,4]. In particular, the so-called SIS (susceptible-
infected-susceptible), SIR (susceptible-infected-removed),
and SEIR (susceptible-exposed-infected-recovered) mod-
els have been developed and studied either in terms of lin-
ear differential equations that describe the rate of change
of each group of the population, or in discrete forms on
regular lattices, such as the square lattice. The long-term
dynamics of these models, when studied in terms of differ-
ential equations (which represent a type of mean-field ap-
proximation) or on regular lattices, is relatively simple [5]
and can be expressed in terms of two fixed points: Either
the disease dies out, or a stable equilibrium is reached
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whereby the disease is endemic. A threshold condition
determines which of the two fixed points is stable. More
complex behavior may arise when, for example, the model
contains a seasonal forcing. Generalizations to models in
which the ill individuals have a continuum of states have
also been made [6].

More recently, a few of such models have been exam-
ined in complex networks in order to understand some
social phenomena. In particular, Zanette [7] examined the
dynamics of an epidemiclike model for the spread of a “ru-
mor” on a small-world (SW) network. A SW network is
constructed starting from a one-dimensional lattice with
periodic boundary conditions which, in effect, make the
lattice a ring, where each node is connected to its 2k near-
est neighbors, i.e., to the k nearest neighbors clockwise
and counterclockwise [8]. To introduce disorder into the
network, each of the k clockwise connections of each node
i is rewired with a probability q to a randomly-selected
node j that does not belong to the “neighborhood” of i.
In this way, the lattice contains shortcuts between distant
nodes. Zanette [7] showed that his model exhibits a tran-
sition between regimes of localization and propagation at
a finite value of the network randomness q. Somewhat si-
miliar work was carried out by Shao et al. [9] who studied
how “blackmail” propagates in a SW network. In contrast,
Pastor-Satorras and Vespignani [10] showed that a dynam-
ical model of spreading of epidemics does not exhibit any
threshold behavior when studied in a SF network, hence
demonstrating a crucial difference between spreading of
an epidemic phenomenon in SW and SF networks, which
is clearly due to their completely different connectivity
structures.

The plan of this paper is as follows. In the next sec-
tion we describe the model. Section 3 contains the results
and a discussion of their implications. A modified shorter
version was published for the social sciences in Sozial-
wissenschaftlicher Fachinformationsdienst(soFid) - Meth-
oden und Instrumente der Sozialwissenschaften, 2006/1,
Informations-Zentrum Sozialwissenschaften, Bonn, Ger-
many.

2 The model

In the model the entire population is divided into four
fractions: the general population G, those portions of the
population that are either susceptible to, or excited about,
an opinion, which we denote, respectively, by S and E,
and the “fanatics” F who always advocate an opinion.
Initially, everyone belongs to G, except a core of fanatics
which, unless otherwise specified, is assumed to be four
(but can be generalized to any number), since the most
interesting results are obtained with a few initial fanatics
(see below). Then, people can change their opinions de-
pending on the neighbours to whom they listen to. Mem-
bers of the S, E, and F groups can convince people in
the G group to change their opinion and become suscep-
tible to the fanatics’s opinion; members of the E and F
groups can convince the S group to become E; members
of the F group can convince the E’s members to convert

to F , but members of the S, E, and F groups can also
directly return to the general population G. The fanatics
are created initially by some outside event which is not
part of the model. All the opinion changes happen with
a probability p that can take any particular value if there
is any evidence for it. Such a model can be applied not
only to terrorism and other extreme opinions, but also to
any other social phenomenon for which there is a degree
of enthusiasm, or susceptibility, in a society.

A model of opinion dynamics was proposed recently
based on the percolation model [11]. Another recent
model [12] uses, similar to our work, SF networks, but
its dynamics and the quantities that it studies are com-
pletely different from those of the model studied in this
paper. The partition of the population and the proba-
bilities of opinion change in our model are similar to the
model of Castillo-Chavez and Song [2] who proposed a de-
terministic continnum model in terms of a set of nonlinear
differential equations, given by

dS(t)
dt

= β1CG − β2S(E + F )
C

− γ1S,

dE(t)
dt

=
β2S(E + F )

C
− β3EF

C
− γ2E,

dF (t)
dt

=
β3EF

C
− γ3F, (2)

where the various coefficients, βi and γi, are constant, and
C = S+E+F = 1−G. Without loss of generality, one can
set β1 = 1 since, otherwise, it can be absorbed in the time
scale. (Omitting the denominators here does not change
much the results.) For comparison, the dynamics of the
SEIR model is described by [5]

dS(t)
dt

= µG − (µ + λ)S,

dE(t)
dt

= λS − (µ + σ)E,

dF (t)
dt

= σE − (µ + ν)F, (3)

and, λ = βF , with the various parameters being constant.
It is clear that the dynamics of our model is, in the con-
tinuum limit, much more complex than that of the SEIR
model. Castillo-Chavez and Song [2] studied their con-
tinuum model in detail. Similarly, the SEIR model was
studied by, for example, Lloyd and May [5].

The models expressed by the sets (2) and (3) com-
pute average behavior over the entire population and do
not deal with individuals. Such approximations cannot an-
swer, for example, the question of whether or how a few
fanatics can convince an entire population about a cer-
tain opinion or proposition. They also cannot take into
account the effect of the SF structure of the interaction
network between people. Discretizing the model using a
regular lattice, such as a square lattice, is also not realis-
tic because the range of the interactions in such networks
is limited. Instead, networks [1] between people or com-
puters are described better as scale-free, and a network
of the Barabási-Albert (BA) type is the most widespread.
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G → S with probability β1, if the neighbour is S, E, or F,

F → G with probability γ3,

E → G with probability γ2, and E → F with probability β3/C, if the selected neighbour is F,

S → G with probability γ1, and S → E with probability β2/C, if the selected neighbour is E or F.

This is a complex network in which the probability dis-
tribution for a node to have k links to other nodes fol-
lows equation (1) with γ = 3. In such a network, a few
people (nodes) have many connections, most people have
rather few, and there is no sharp boundary between these
extremes. We note that power laws also hold for the prob-
ability of terror attacks [13]. We simulate and study the
model that we described above in the BA network which,
to our knowledge, has never been done before on either the
SW or SF networks. The BA networks are built by start-
ing with four nodes (people) all connected to each other.
Then newcomers join the network one after the other by
connecting to the already-existing four members, with a
probability proportional to the number of connections the
member already has.

In our study we use two BA types of SF net-
works. One is the hierarchical network with directed
connections [14,15], which is a history-dependent network
in the sense that a member only listens to and can be con-
vinced by the four people who joined earlier and were se-
lected by the member. The four people, who are higher in
the hierarchy than the new member, do not listen to the
new network member (that is, do not change their opinion
as a result of talking to the new network member). This
is presumably the way a group with a rigid hierarchical
command structure operates. Thus, one has a hierarchy
determined by who joins the group first. The second type
of the network that we use is symmetrical in the sense
that all the connected members may influence each other,
which is the way a group with a flexible command struc-
ture may operate, so that even if the top leaders (the orig-
inal fanatics) are eliminated, the group and its influence
on people’s opinion may live on.

To simulate our model on a SF network, and to do
so in a way that corresponds to the continuum model of
Castillo-Chavez and Song [2], we adopt the following rules:

(see rules on top of page)

In this paper we mostly use, βi = γi (i = 1, 2, 3), and
refer to their common value as p, as the main goal in this
paper is to study the effect of a few well-connected fa-
natics on the opinion of an entire population. Since the
behavior of the population now depends on the individu-
als’ opinion and not just on their sum over all the lattice
sites, sequential updating was used to simulate the model
in both types of the network. We start with four fanatics
on the network core while everybody else belongs to the
general population G. We assume that the initial four fa-
natics are charismatic leaders forming the initial core of
the network and, thus, becoming well-connected later.
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Fig. 1. Time development, from top to bottom, of the gen-
eral (+), the susceptible (×), the excited (∗), and the fanatic
population (squares) in the hierachical network. The total pop-
ulation is 25 million; the vertical scale is logarithmic.

3 Results and discussion

Figure 1 shows the results using the hierarchical network.
Here, we used the probability p = 1/2. It indicates that in
the first few time steps few fanatics can convert more than
a million people to being susceptible to their opinion in a
population of 25 million, even though the number of the
fanatics actually falls down in the first few steps. The E
and F groups grow to much smaller percentages. Finally,
the three groups, S, E, and F vanish, and everybody re-
turns to the general population G. However, the S and
E groups can survive longer than the fanatics; it is even
possible that the fanatics die out accidentally after three
time steps. Nevertheless, the avalanche that they set in
motion stays on for a long time, which is in fact a well-
known phenomenon for many extreme opinions or groups
with such opinions.

In the symmetric, instead of hierarchical, networks the
survival of the S and E groups is also possible, instead of
their eventual extinction that Figure 1 indicates. This is
shown in Figure 2. For a probability p = 1/2 to return
from the S, E, and F groups to the general population
G, the fanatics decrease from 4 to 2 in the first time step
and vanish afterwards; nobody becomes excited, but up
to 100 people become susceptible for some time, which is
indicated by the continuous curve in Figure 2. If, how-
ever, we reduce to 0.1 (from 1/2) the probabilities γi to
return from the S, E, and F groups to G, then all four
populations survive as large fractions of the population
(shown by symbols in Fig. 2). The mutual reinforcement
of opinions in symmetric networks, which is impossible in
the hierarchical networks, greatly increases the spread of
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Fig. 2. Results with the symmetric networks with 105 people.
With the usual parameters (see the text) the susceptibles first
grow in numbers and then die out (line). With a 5 times slower
rate of return to the general opinion, the G (+), S (×), E (∗)
and F (squares) groups all become roughly equal and do not
die out. After 100 iterations, the results remain stable at least
up to 100 000 iterations.
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Fig. 3. Reduced probabilities as in Figure 2, but for a hier-
archical network of 25 million people, with linear vertical and
logarithmic horizontal axis. Eventually, everyone returns to the
general population G as in Figure 1.

opinions. For comparison, Figure 3 shows the results for
the hierarchical network with the same reduced probabil-
ity p = 0.1 to return, indicating that even with this prob-
ability everybody becomes normal (returns to the general
population) after some time, i.e., stops believing in the
fanatics’ opinion.

The great influence of the four initial fanatics comes
from the fact that these founders of the network, numbers
1, 2, 3, and 4 in its history, are well connected. The later a
person joins the interaction network (higher membership
numbers), the smaller is, in general, the number of con-
nections and, thus, the influence. This effect is shown in
Figure 4 where the top curve shows how up to 5% of the
population become susceptible under the influence of num-
bers 1, 2, 3, and 4 (taking p = 1/2). If, instead, network
members 11, 12, 13, and 14 are taken as the initial radi-
cals (second curve from above in Fig. 4), then less than 1%
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Fig. 4. The sum over all susceptibles in 10 hierarchical net-
works of 25 million people each. The four initial radicals joined
the network, from top to bottom, as numbers 1, 2, 3, and 4; 11,
12, 13, and 14; then 101, 102, 103, and 104, until 10 000 001,
10 000 002, 10 000 003, 10 000 004 for the lowest curve. Late-
comers are seen to have little influence.
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Fig. 5. The evolution of the susceptible population S when,
aside from the core four fanatics, the rest of the population
is initially susceptible (+), exited (×), fanatic (∗), or belongs
to the general population (squares). The results are for the
hierarchical structure obtained with the probability p = 1/2.

of the population becomes susceptible. The lower curves
show analogously how the influence of the initial four fa-
natics is reduced if we take them as the four which follow
numbers 102, 103, . . . , 107 in the networks of size 25 mil-
lion.

Due to the nonlinearity of the model, the initial con-
centrations, E(0), S(0), and G(0), are important to its
dynamics and, therefore, we have considered their effect.
We considered the case in which everybody outside the
initial core was initially, (a) susceptible (S); (b) excited
(E); (c) fanatic (F ), or (d) belonged to the general popu-
lation (G) as before. The four core members were always
the fanatics (F ). We studied the model in the hierarchical
SF network with 35 million nodes.

Figure 5 shows the results for the evolution of suscep-
tible population S in the four cases, with the probability



D. Stauffer and M. Sahimi: Can a few fanatics influence the opinion of a large segment of a society? 151

1

10

100

1000

10000

100000

1 M

10 M

100 M

0 5 10 15 20 25 30 35 40 45 50

E

time

Fig. 6. Same as in Figure 5, but for the excited population E.
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Fig. 7. Same as in Figure 6, but with p = 0.2.

p being 1/2. Except when the whole system (aside from
the core four fanatics) is composed of susceptible people,
the fraction of the S population first increases, reaching
a maximum, but then decreases essentially exponentially,
even when everybody in the network is initially a fanatic.
A similar phenomenon is seen to happen to the excited
population E, the results for which are shown in Figure 6.
Such a behavior will not change if the probability p is var-
ied. For example, Figure 7 presents the results for the E
population obtained with p = 0.2, while Figure 8 shows
those for the S population with p = 0.8. In all cases,
the exited and susceptible populations eventually vanish.
Even the population of the fanatics eventually vanishes
with the hierarchical structure. For example, Figure 9
shows the results for the fanatic population with p = 0.2.
The only effect that the probability of conversion has is
the time scale over which the populations of the excited,
fanatic, or susceptible people eventually vanish. Therefore,
with a hierarchical structure everybody will eventually go
back to the general population, and will neither be suscep-
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Fig. 8. Same as in Figure 5, but with p = 0.8.
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Fig. 9. Same as in Figure 6, but for the fanatic population F .

tible to nor excited about the opinion originally advocated
by the core fanatics. The most important aspect of these
results is the robust nature of the model: regardless of the
initial composition of the network, the E, F , and S seg-
ments of the population eventually die out, and everybody
returns to the general population.

To see whether the connectivity and hierarchy of the
network make any difference to the results shown in Fig-
ures 5–9, we repeated the simulations using the symmet-
rical SF network in which the influence of two connected
nodes on each other is mutual. Figure 10 presents the re-
sults for the susceptible population, which should be com-
pared with those shown in Figure 5. Similar to Figure 5,
the susceptible population in this case also decreases over
time, but the reduction, rather than being exponential as
in Figure 5, is complex and seemingly resembles an oscil-
latory pattern, which is due to the feedback mechanism
which is present in the symmetrical network.

BA networks have a percolation threshold [10]
vanishing as 1/ log(N) and thus purely geometrically
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Fig. 10. Same as in Figure 5, but for the symmetrical SF
network.

information can always spread through a large population.
But this is only a necessary and not a sufficient condition
for opinion spreading; as Figure 1 and the lower curve in
Figure 2 indicate, opinions may also die out instead of
spreading.

4 Summary

Although some previous works [16] had investigated the
spreading of a state shared by a number of agents, none
was in the context of the type of model that we study in
this paper, namely, a four-component interacting system
with the interactions being via a SF network. In addition,
we find important differences between the influence of the
hierarchical and symmetric networks on opinion dynamics.
If the followers listen to the leaders but not the other way
around (hierarchical interaction network), then the ideas
of the leaders will die out. If, on the other hand, the lead-
ers also listen to their followers, then their opinions spread
only to a smaller fraction of the population but may last
long, even if the leaders themselves are eliminated. The
closer the leaders are to the core of the network (the best
connected part of the network), the higher is their impact
on the general population. This is similar to Ising magnets
which were studied on SF networks [17] and square lat-
tices and gave drastically different results for hierarchical
as opposed to undirected symmetric interactions. In con-
trast, no such differences were observed in another model
of opinion dynamics [15] networks. We regard the possi-
bility of a few people to influence a large fraction of the
population, and the persistence of an opinion in a sym-
metrical SF network but not in a hierarchical one, as the
main results of this paper.

Further predictions of the model, a comparison with
its continuum counterpart, and its simulation on regular
two-dimensional lattices, is reported elsewhere [18].
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